\(\int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [566]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 204 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}} \]

[Out]

-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a^2-2*a*b-b^2)*arctan(1+2^(1/2)*tan(d*
x+c)^(1/2))/d*2^(1/2)-1/4*(a^2+2*a*b-b^2)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)+1/4*(a^2+2*a*b-b
^2)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)-2*a^2/d/tan(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3623, 3615, 1182, 1176, 631, 210, 1179, 642} \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}} \]

[In]

Int[(a + b*Tan[c + d*x])^2/Tan[c + d*x]^(3/2),x]

[Out]

((a^2 - 2*a*b - b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + Sqr
t[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a^2 + 2*a*b - b^2)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]
])/(2*Sqrt[2]*d) + ((a^2 + 2*a*b - b^2)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (2
*a^2)/(d*Sqrt[Tan[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3623

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2}{d \sqrt {\tan (c+d x)}}+\int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {2 a^2}{d \sqrt {\tan (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {2 a b+\left (-a^2+b^2\right ) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {2 a^2}{d \sqrt {\tan (c+d x)}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {2 a^2}{d \sqrt {\tan (c+d x)}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d} \\ & = -\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d} \\ & = \frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.83 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.81 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {4 b^2+4 (a-b) (a+b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\tan ^2(c+d x)\right )+\sqrt {2} a b \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \sqrt {\tan (c+d x)}}{2 d \sqrt {\tan (c+d x)}} \]

[In]

Integrate[(a + b*Tan[c + d*x])^2/Tan[c + d*x]^(3/2),x]

[Out]

-1/2*(4*b^2 + 4*(a - b)*(a + b)*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2] + Sqrt[2]*a*b*(2*ArcTan[1 - S
qrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + T
an[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.98

method result size
derivativedivides \(\frac {\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{2}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(200\)
default \(\frac {\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{2}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(200\)
parts \(\frac {a^{2} \left (-\frac {2}{\sqrt {\tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {b^{2} \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}+\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2 d}\) \(286\)

[In]

int((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/2*a*b*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*ar
ctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(-a^2+b^2)*2^(1/2)*(ln((1-2^(1/2)*
tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*a
rctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))-2*a^2/tan(d*x+c)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1023 vs. \(2 (174) = 348\).

Time = 0.28 (sec) , antiderivative size = 1023, normalized size of antiderivative = 5.01 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left ({\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} - 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) - d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left (-{\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} - 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) - d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left ({\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} + 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) + d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left (-{\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} + 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) + 4 \, a^{2} \sqrt {\tan \left (d x + c\right )}}{2 \, d \tan \left (d x + c\right )} \]

[In]

integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/2*(d*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(
((a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) - 2*(a^5*b - 6*a^3*b^3 + a*b^5)
*d)*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2) + (a^8 -
 4*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^8)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*sqrt((4*a^3*b - 4*a*b^3 + d^2*
sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(-((a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*
b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) - 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d)*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqr
t(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2) + (a^8 - 4*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 +
 b^8)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4
- 12*a^2*b^6 + b^8)/d^4))/d^2)*log(((a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d
^4) + 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d)*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12
*a^2*b^6 + b^8)/d^4))/d^2) + (a^8 - 4*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^8)*sqrt(tan(d*x + c)))*tan(d*x + c)
 + d*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(-((
a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) + 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d
)*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2) + (a^8 - 4
*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^8)*sqrt(tan(d*x + c)))*tan(d*x + c) + 4*a^2*sqrt(tan(d*x + c)))/(d*tan(d
*x + c))

Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*tan(d*x+c))**2/tan(d*x+c)**(3/2),x)

[Out]

Integral((a + b*tan(c + d*x))**2/tan(c + d*x)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \frac {8 \, a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

[In]

integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a^2 - 2*
a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)*sqr
t(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x +
c) + 1) + 8*a^2/sqrt(tan(d*x + c)))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 5.64 (sec) , antiderivative size = 949, normalized size of antiderivative = 4.65 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=2\,\mathrm {atanh}\left (\frac {32\,a^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}+\frac {32\,b^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}-\frac {192\,a^2\,b^2\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}\right )\,\sqrt {-\frac {a^4\,1{}\mathrm {i}-4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}+4\,a\,b^3+b^4\,1{}\mathrm {i}}{4\,d^2}}-2\,\mathrm {atanh}\left (\frac {32\,a^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}+\frac {32\,b^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}-\frac {192\,a^2\,b^2\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}\right )\,\sqrt {\frac {a^4\,1{}\mathrm {i}+4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}-4\,a\,b^3+b^4\,1{}\mathrm {i}}{4\,d^2}}-\frac {2\,a^2}{d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}} \]

[In]

int((a + b*tan(c + d*x))^2/tan(c + d*x)^(3/2),x)

[Out]

2*atanh((32*a^4*d^3*tan(c + d*x)^(1/2)*((a^3*b)/d^2 - (b^4*1i)/(4*d^2) - (a*b^3)/d^2 - (a^4*1i)/(4*d^2) + (a^2
*b^2*3i)/(2*d^2))^(1/2))/(16*a^6*d^2 - 16*b^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i + 112*a^2*b^4*d^2 - a^3*b^3*
d^2*192i - 112*a^4*b^2*d^2) + (32*b^4*d^3*tan(c + d*x)^(1/2)*((a^3*b)/d^2 - (b^4*1i)/(4*d^2) - (a*b^3)/d^2 - (
a^4*1i)/(4*d^2) + (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*a^6*d^2 - 16*b^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i + 112*
a^2*b^4*d^2 - a^3*b^3*d^2*192i - 112*a^4*b^2*d^2) - (192*a^2*b^2*d^3*tan(c + d*x)^(1/2)*((a^3*b)/d^2 - (b^4*1i
)/(4*d^2) - (a*b^3)/d^2 - (a^4*1i)/(4*d^2) + (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*a^6*d^2 - 16*b^6*d^2 + a*b^5*d^2
*32i + a^5*b*d^2*32i + 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i - 112*a^4*b^2*d^2))*(-(4*a*b^3 - 4*a^3*b + a^4*1i +
b^4*1i - a^2*b^2*6i)/(4*d^2))^(1/2) - 2*atanh((32*a^4*d^3*tan(c + d*x)^(1/2)*((a^4*1i)/(4*d^2) + (b^4*1i)/(4*d
^2) - (a*b^3)/d^2 + (a^3*b)/d^2 - (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*b^6*d^2 - 16*a^6*d^2 + a*b^5*d^2*32i + a^5*
b*d^2*32i - 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i + 112*a^4*b^2*d^2) + (32*b^4*d^3*tan(c + d*x)^(1/2)*((a^4*1i)/(
4*d^2) + (b^4*1i)/(4*d^2) - (a*b^3)/d^2 + (a^3*b)/d^2 - (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*b^6*d^2 - 16*a^6*d^2
+ a*b^5*d^2*32i + a^5*b*d^2*32i - 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i + 112*a^4*b^2*d^2) - (192*a^2*b^2*d^3*tan
(c + d*x)^(1/2)*((a^4*1i)/(4*d^2) + (b^4*1i)/(4*d^2) - (a*b^3)/d^2 + (a^3*b)/d^2 - (a^2*b^2*3i)/(2*d^2))^(1/2)
)/(16*b^6*d^2 - 16*a^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i - 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i + 112*a^4*b^2*
d^2))*((4*a^3*b - 4*a*b^3 + a^4*1i + b^4*1i - a^2*b^2*6i)/(4*d^2))^(1/2) - (2*a^2)/(d*tan(c + d*x)^(1/2))